Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Daniel E. Lynch ${ }^{\text {a* }}$ and Ian McClenaghan ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{b}}$ Key Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail:
apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.030$
$w R$ factor $=0.069$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-tert-Butyl-4-bromo-1,2-dihydro-1H-pyrazol-3(2H)-one monohydrate

The structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$, exhibits an elaborate hydrogen-bonding network involving pyrazole $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ dimers and two other hydrogen-bonding motifs, both including water molecules. One motif is a distorted hexagonal $R_{3}^{5}(11)$ graph set, while the other is a distorted octagonal boat conformation $R_{6}^{4}(14)$ graph set.

Comment

In a series of studies on the preparation and hydrogenbonding properties of 3,4,5-tri-substituted pyrazoles, we recently characterized the structure of 5-tert-butyl-4-nitro- 1 H -pyrazol-3-ol (Lynch \& McClenaghan, 2005). We report here the structure of the title compound, (I). Similar to 5-tert-butyl-4-nitro-1H-pyrazol-3-ol, compound (I) originated from 3,5-di-tert-butylpyrazole. Compound (I) was prepared by reacting 3,5-di-tert-butylpyrazole with bromine in chloroform solution at room temperature. In these reactions, 3,5-di- t-butylpyrazole is attacked by either nitric acid (as in the case of 5-tert-butyl-4-nitro- $1 H$-pyrazol-3-ol) or bromine to form the onium species, which then displaces one tert-butyl group. The subsequent vacant position is then filled by an OH group that, in the case of (I), tautomerizes to form the pyrazolone.

(I)

In the structure of (I) (Fig. 1), all strong hydrogen-bonding components are involved in the hydrogen-bonding network. The hydrogen-bonding geometry for this structure is listed in Table 1. The fourfold symmetry in (I) arises because of the unique hydrogen-bonded motif that is formed via contributions from eight pyrazole molecules and four water molecules. Each pyrazole molecule forms a centrosymmetric $R_{2}^{2}(8)$ graph set (Etter, 1990) dimer via $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 5$ interactions, at (x, y, z) and $\left(-x+\frac{3}{2},-y+\frac{1}{2},-z+\frac{1}{2}\right)$, centred at $\left(\frac{3}{4}, \frac{1}{4}, \frac{1}{4}\right)$. The $\mathrm{N} 2 / \mathrm{H}$ group associates with $\mathrm{O} 1 W$, at (x, y, z) and $\left(y+\frac{1}{4},-x+\frac{5}{4}, z+\frac{1}{4}\right)$. O1W, at (x, y, z), associates with two O5 atoms, one at (x, y, z) and the other at $\left(-y+\frac{5}{4}, x-\frac{3}{4},-z+\frac{1}{4}\right)$. Thus, each O5 atom is involved in a four-centre hydrogen-bonding association. For O5, at (x, y, z), the three non-H-atom contacts are $\mathrm{O} 1 W$ at $(x$, $y, z)$, O1I at $\left(y+\frac{3}{4},-x+\frac{5}{4},-z+\frac{1}{4}\right)$ and N 1 at $\left(-x+\frac{3}{2},-y+\frac{1}{2}\right.$, $\left.-z+\frac{1}{2}\right)$ (Fig. 2). Three pyrazole molecules, at $(x, y, z),\left(-x+\frac{3}{2}\right.$,

Received 21 April 2005 Accepted 22 April 2005 Online 6 July 2005

Figure 1
Molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

Figure 2
Hydrogen-bonding environment for (I), at (x, y, z), showing the centrosymmetric $R_{2}^{2}(8) \mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 5$ dimer, the two hydrogen-bonding associations from $\mathrm{O} 1 W$, and the four-centre hydrogen-bonding association involving O5. For clarity, H atoms not involved in the hydrogenbonding interactions have been omitted. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $y+\frac{1}{4},-x+\frac{5}{4}$, $z+\frac{1}{4}$; (iii) $-y+\frac{5}{4}, x-\frac{3}{4},-z+\frac{1}{4}$; (iv) $y+\frac{3}{4},-x+\frac{5}{4},-z+\frac{1}{4}$.]
$\left.-y+\frac{1}{2},-z+\frac{1}{2}\right)$ and $\left(-y+\frac{5}{4}, x-\frac{3}{4},-z+\frac{1}{4}\right)$, and two water molecules, at (x, y, z) and $\left(-y+\frac{5}{4}, x-\frac{3}{4},-z+\frac{1}{4}\right)$, form a distorted hexagonal hydrogen-bonding motif [graph set $R_{3}^{5}(11)$], adjoining the $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 5$ dimer, fused via the same interaction (Fig. 3). The hexagonal motifs are also fused with each other via the $\mathrm{O} 1 W-\mathrm{H} \cdots \mathrm{O} 5$ interaction at (x, y, z). The resulting arrangement also creates a distorted octagonal boat conformation hydrogen-bonding motif [graph set $R_{6}^{4}(14)$] involving four pyrazole groups, at $(x, y, z),\left(-x+\frac{3}{2},-y+\frac{1}{2}\right.$, $\left.-z+\frac{1}{2}\right),\left(x-\frac{1}{2}, y,-z+\frac{1}{2}\right)$ and $\left(1-x,-y+\frac{1}{2}, z\right)$, and two water molecules, at $\left(y+\frac{1}{4},-x+\frac{5}{4}, z+\frac{1}{4}\right)$ and $\left(-y+\frac{3}{4}, x-\frac{3}{4}, z+\frac{1}{4}\right)$

Figure 3
Part of the structure of (I), at (x, y, z), showing the distorted $R_{3}^{5}(11)$ hexagonal motif, and its position with respect to the $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 5$ dimer. For clarity, H atoms not involved in the hydrogen-bonding interactions have been omitted. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{1}{2},-z+\frac{1}{2}$, (ii) $-y+\frac{5}{4}, x-\frac{3}{4}, z-\frac{1}{4}$]

Figure 4
Part of the structure of (I), at (x, y, z), showing the distorted $R_{6}^{4}(14)$ octagonal boat motif and its position with respect to the $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 5$ dimer. For clarity, H atoms not involved in the hydrogen-bonding interactions have been omitted. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-y+\frac{3}{4}, x-\frac{3}{4}, z+\frac{1}{4}$; (iii) $1-x,-y+\frac{1}{2}, z$; (iv) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (v) $y+\frac{1}{4},-x+\frac{5^{4}}{4}, z+\frac{1}{4}$.
(Fig. 4). A stereoview of the unit cell contents of (I) is shown in Fig. 5. The Br atom does not contribute to the hydrogenbonding network; atom Br 4 is 3.469 (3) \AA from $\mathrm{O} 1 W$, and 3.412 (3) \AA from $\mathrm{N} 2\left(-y+\frac{5}{4}, x-\frac{1}{4}, z-\frac{1}{4}\right)$.

Experimental

The title compound was obtained from Key Organics Ltd, and crystals were grown from an ethanol solution.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=237.10$	Cell parameters from 2331
Tetragonal, $I 4_{1} / a$	\quad reflections
$a=13.6840(4) \AA$	$\theta=2.9-27.5^{\circ}$
$c=21.4734(8) \AA$	$\mu=4.06 \mathrm{~mm}^{-1}$
$V=4020.9(2) \AA^{3}$	$T=150(2) \mathrm{K}$
$Z=16$	Prism, colourless
$D_{x}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$	$0.36 \times 0.27 \times 0.20 \mathrm{~mm}$

Mo $K \alpha$ radiation
Cell parameters from 2331
tions

- $4.9-27.5$
$T=150$ (2) K
Prism, colourless
$0.36 \times 0.27 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.288, T_{\text {max }}=0.444$
12489 measured reflections
1977 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0247 P)^{2}\right.} \\
&+7.0406 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 5
Stereoview of the unit cell contents of (I).
tion: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Lynch, D. E. \& McClenaghan, I. (2005). Acta Cryst. E61, o2347-o2348.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (1997). PLATON9. University of Utrecht, The Netherlands.

